skip to main content
Resource type Show Results with: Show Results with: Index

Data preparation for analytics using SAS

Svolba, Gerhard. ;SAS Institute.

Cary, NC : SAS Institute 2006

Online access

  • Title:
    Data preparation for analytics using SAS
  • Author/Creator: Svolba, Gerhard.
  • SAS Institute.
  • Variant Title: SAS Press series
  • Publisher: Cary, NC : SAS Institute
  • Creation Date: 2006
  • Language: English
  • Physical Description: 1 online resource (xxii, 408 p.) : ill.
  • Subjects: Business -- Data processing; Electronic data processing; Data marts; Data mining; Time-series analysis; SAS (Computer file); Enterprise miner
  • Notes: Includes index.
  • Contents: pt. 1. Data preparation: business point of view
    ch. 1. Analytic business questions
    Ch. 2. Characteristics of analytic business questions
    Ch. 3. Characteristics of data sources
    Ch. 4. Different points of view on analytic data preparation
    pt. 2. Data structures and data modeling
    Ch. 5. The origin of data
    Ch. 6. Data models
    Ch. 7. Analysis subjects and multiple observations
    Ch. 8. The one row-per-subject data mart
    Ch. 9. The multiple-rows-per-subject data mart
    Ch. 10. Data structures for longitudinal analysis
    Ch. 11. Considerations for data marts
    Ch. 11. Considerations for predictive modeling
    pt. 3. Data mart coding and content
    Ch. 13. Accessing data
    Ch. 14. Transposing one- and multiple-rows-per-subject data structures
    Ch. 15. Transposing longitudinal data
    Ch. 16. Transformations of interval-scaled variables
    Ch. 17. Transformations of categorical variables
    Ch. 18. Multiple interval-scaled observations per subject
    Ch. 19. Multiple catagorical observations per subject
    Ch. 20. Coding for predictive modeling
    Ch. 21. Data preparation for multiple-rows-per-subject and longitudinal data marts
    pt. 4. Sampling, scoring, and automation
    Ch. 22. Sampling
    Ch. 23. Scoring and automation
    Ch 24. Do's and don'ts when building data marts
    pt. 5. Case studies.
  • OCLC Number: 123085750
  • Identifier: ISBN9781599943367 (electronic bk.);ISBN1599943360 (electronic bk.)